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1. Overview

The Michigan Genomics Initiative (MGI)1 has a wealth of genotype and electronic health
record data available for research. To aid in the exploration of these high dimensional data, we
provide the MGI PheWeb2 which visualizes pre-computed multi-ancestry genome wide
association studies (GWAS) for 1,728 Phecode3 phenotypes using the most recent MGI Genetic
Data Freeze 64. Previous releases of the MGI PheWeb were based solely on genetically inferred
European participants1. The results of multi-ancestry analyses have the potential to lend insight
into relationships between clinical phenotypes and genetic variants which are shared across
populations5. The PheWeb2 is an online interface where GWAS and phenome wide association
study (PheWAS) results can be explored through interactive Manhattan, regional association
plots (Locuszoom), and Q-Q plots. Links to the GWAS Catalog, dbSNP, and the UCSC Genome
Browser are provided for additional information on individual genetic variants. Results can be
searched by phecode, genetic variant, or gene name to explore the associations between 52
million imputed genetic variants and 1,728 phecode phenotypes. Users can request access to
summary statistics by contacting phdatahelp@umich.edu.

2. Study Population

We included participants from the MGI Data Freeze 6 for which we had International
classification of diseases ICD9-CM or ICD10-CM diagnosis codes available (n = 80,381). The
MGI cohort is primarily recruited during inpatient surgical procedures at Michigan Medicine
(Figure 1)1,4. MGI Freeze 6 consists of primarily of individuals of majority European descent
(EUR; 69,505; 86.5%) with the remaining participants being majority African (AFR; 4,980; 6.2%),
West Asian (WAS; 2,221; 2.8%), East Asian (EAS; 1,782; 2.2%), Central/Southern Asian (CSA;
1,175; 1.5%), and Native American (AMR; 718; 0.9%)4. Genetically inferred females and males
make up 53.8% and 46.2% of the study cohort, respectively. The mean participant age is 57.4
years (SD = 16.8). Additional cohort demographics are described in detail elsewhere4.
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Figure 1. Study enrollment in MGI Freeze 6. Upset plot showing the contribution of
recruitment studies for MGI Freeze 6. Only the largest 15 sets are plotted. Studies include the
Michigan Genomics Initiative Anesthesiology Collection Effort (MGI), Michigan Predictive
Activity and Clinical Trajectories (MIPACT), Metabolism Endocrinology & Diabetes (MGI-MEND),
Michigan and You – Partnering to Advance Research Together (PHPC also known as
MYPART), Mental Health BioBank (MHB2), PROviding Mental health Precision Treatment
(PROMPT), and Immune Precision in Solid Organ Transplantation (ImPrec). Recruiting studies
with less than 200 participants were combined into the “other” category for visualization and
include the Biobank to Illuminate the Genomic Basis of Pediatric Disease (BIGBiRD), Michigan
Neurological Disorders Precision Health Objective (MIND-PRO), Michigan eArly disease
Progression cohort in COPD (MGI-MAP-COPD), Integration of Immune Phenotypes in
Autoimmune Skin Disease (PerMIPA), Inflammatory Bowel Disease Databank (IBD-Biobank),
and MGI-Dysplasia-Associated Arterial Disease Precision Health Network (MGI-DAAD).

3. Genetic Data

We used Trans-Omics for Precision Medicine (TOPMed) imputed genotypes for 52
million well imputed (Rsq ≥ 0.3) genetic variants. Analyses were restricted to variants with minor
allele frequency (MAF) ≥ 0.001 and minor allele count (MAC) ≥ 204. Genotyping, quality control,
and genotype imputation methods are described in detail elsewhere4.
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4. Phenotyping

ICD9-CM and ICD10-CM billing codes codes were extracted from the De-Identified
Research Data Warehouse (DeID RDW) on 09/18/2023. We mapped ICD codes to phecode
phenotypes using the R PheWAS package (v0.99.6-1)3,6,7. We required a minimum ICD code
count of 1 to determine phecode cases and exclusions. All default exclusions were applied
including those for sex specific traits. Due to high p-value inflation observed previously in
phenotypes with low case counts1, we excluded any phecode phenotype with < 60 cases from
further analyses. The number of phecodes per individual varied with age, with older individuals
having a greater number of phecodes on average (Figure 2A). The number of phecodes per
individual also varied by genetic ancestry with AFR and WAS having the greatest number of
phecodes per sample (mean phecodes per sample: AFR = 87.5, AMR = 64.9, CSA = 58.2, EAS
= 57.7, EUR = 74.4, WAS = 84.9; Figure 2B). Overall, we conducted GWAS for 1,728 traits
across 17 phecode categories3 (Table 1).

Figure 2. Phenotype distribution in MGI Freeze 6. The distribution of phecode cases across
(A) participant age and (B) majority genetic ancestry. Colors represent majority genetic ancestry:
red - African (AFR), orange - Native American (AMR), yellow - Central/Southern Asian (CSA),
light blue - East Asian (EAS), blue - European (EUR), and dark blue - West Asian (WAS).

Phecode Category Number of Traits
genitourinary 168
circulatory system 164
digestive 158
endocrine/metabolic 149
neoplasms 138
musculoskeletal 126
sense organs 119
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injuries & poisonings 113
dermatologic 93
respiratory 85
neurological 84
mental disorders 73
infectious diseases 64
hematopoietic 58
congenital anomalies 54
symptoms 45
pregnancy complications 37

Table 1. Summary of phecode traits available in MGI Freeze 6.  The number of phecode
GWASs per phecode category.

5. Genome Wide Association Studies

We used SAIGE v1.3.08 to run a logistic mixed model with saddle point approximation
and included age (as of January 1, 2023 for living participants and at death for deceased
participants), genotype-inferred sex, genotyping array (CoreExome v1.0, CoreExome v1.1,
CoreExomev1.3, or GSA v1.3), and the first 20 global principal components of ancestry4 as
covariates. To control for sample relatedness when fitting the null model in SAIGE step 1, we
used a sparse genetic relatedness matrix (GRM) with a relatedness cutoff of 0.05. The sparse
GRM was calculated using directly assayed autosomal genotypes. Prior to calculating the
sparse GRM, we used PLINK for LD pruning by setting a squared correlation > 0.5, a walking
window of 500 variants, and a step length of 5 variants. For association tests in SAIGE step 2,
we used TOPMed imputed genotypes and excluded variants with low imputation quality (Rsq <
0.3) or very rare minor alleles (MAF < 0.001 or MAC < 20). Firth’s test was applied to refine
p-values < 0.01. We calculated the median genomic control values for variants with MAF > 1%
for all phecode GWASs. If the genomic control value was greater than or equal to 1.05, we
re-ran the GWAS using a full GRM generated on the fly in SAIGE step 1. The full GRM was also
used for phenotypes with sample sizes ≥ 80,220 due to computational errors in SAIGE when
performing factorization on the sparse GRM. When using the full GRM, the
leave-one-chromosome out (LOCO) strategy was applied for autosomal variants, whereby the
association test is conditional on the null model predictions made without using the
chromosome where the variant is located. This was done to avoid proximal contamination8.

After association analysis, we created genomic regions by including all variants 500
kilobases upstream and downstream of variants with p<5x10-8. We then combined overlapping
regions, identified the most significant variant within each region to be the top hit in the region,
and refer to these top hits as independent associations here. This approach has been used to
identify quasi-independent associations in previous phenome-level analyses of MGI1.
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6. Results

The majority of traits were run using the sparse GRM (n = 1,624) with a small number
requiring the use of the full GRM (n = 104). The mean genomic control lambda9 across all traits
was 1.011 (± 0.013; Figure 3).

Figure 3. Distribution of Genomic Control Values in MGI Freeze 6 GWASs. (A) Frequency
of the median genomic control lambda values across Freeze 6 GWASs. Red line in (A)
represents a mean GC lambda of 1.011 across all traits. (B) Distribution of median GC lambda
values across phecode case counts. The blue dashed line represents a GC lambda of 1.

We identified 1,516 independent top hits across 766 phecode phenotypes. Of these, 988
independent top hits across 472 phecode phenotypes have a MAF > 0.01. Caution should be
taken when assessing associations where the MAF < 0.01 as they are more likely to be false
positives10. An example of this can be seen in Table 2, where 4 likely spurious signals are
identified for cancer of lip (X145.1) primarily due to the low MAF (≤ 0.001).

Phecode Trait CHR Position REF/
ALT

rsID BETA
(SE)

p.value Case/
Control

MAF

X286.81 Primary
hypercoagulable

state

1 169549811 C/T rs6025 2.330
(0.100)

4.5E-239 1449/
64649

0.026

X286.8 Hypercoagulable
state

1 169549811 C/T rs6025 2.255
(0.099)

7.2E-231 1544/
64649

0.026

X277.4 Disorders of
bilirubin excretion

2 233759924 C/T rs887829 1.193
(0.04)

1.17E-215 1650/
69875

0.334

5



X654.2 Rhesus
isoimmunization

in pregnancy

1 25235176 G/A rs55794721 2.372
(0.093)

4.35E-142 452/
40843

0.360

X573.5 Jaundice (not of
newborn)

2 233757337 A/G rs1976391 0.814
(0.034)

1.93E-126 1969/
59449

0.331

X286 Coagulation
defects

1 169549811 C/T rs6025 0.973
(0.047)

3.87E-94 7079/
64649

0.026

X145.1 Cancer of lip 14 72285952 A/G rs150669715 7.061
(0.344)

7.91E-94 118/
75275

0.001

X286.12 Congenital
deficiency of
other clotting

factors (including
factor VII)

1 169549811 C/T rs6025 3.004
(0.147)

2.73E-93 225/
64649

0.023

X250.1 Type 1 diabetes 6 32658698 G/A rs9273368 0.634
(0.032)

2.34E-88 4171/
53267

0.272

X250.13 Type 1 diabetes
with ophthalmic
manifestations

6 32658698 G/A rs9273368 1.046
(0.055)

7.27E-80 1330/
53267

0.267

X145.1 Cancer of lip X 87230155 T/C rs144796369 3.674
(0.201)

6.65E-75 118/
75275

0.001

X270.34 Alpha-1-antitrypsi
n deficiency

14 94378610 C/T rs28929474 3.896
(0.217)

5.61E-72 143/
74794

0.016

X172.2 Other
non-epithelial
cancer of skin

6 396321 C/T rs12203592 0.370
(0.021)

4.65E-71 11082/
65663

0.147

X250.12 Type 1 diabetes
with renal

manifestations

6 32658698 G/A rs9273368 1.153
(0.065)

5.16E-70 956/
53267

0.266

X286.7 Other and
unspecified
coagulation

defects

1 169549811 C/T rs6025 0.984
(0.056)

1.59E-69 4805/
64649

0.025

X731.1 Osteitis
deformans

[Paget's disease
of bone]

2 142181421 A/G rs118023866 6.721
(0.385)

3.13E-68 61/
58556

0.001

X172.21 Basal cell
carcinoma

6 396321 C/T rs12203592 0.462
(0.0267)

5.56E-67 5817/
65663

0.144

X286.1 Congenital
coagulation

defects

1 169549811 C/T rs6025 2.137
(0.124)

4.14E-66 464/
64649

0.023

6



X275.1 Disorders of iron
metabolism

6 26092913 G/A rs1800562 1.706
(0.101)

2.30E-64 468/
70712

0.053

X499 Cystic fibrosis 7 117559590 ATCT
/A

rs113993960 2.813
(0.166)

4.23E-64 263/
80118

0.013

X172 Skin cancer 6 396321 C/T rs12203592 0.325
(0.019)

2.64E-63 13234/
65663

0.148

X571.5 Other chronic
nonalcoholic liver

disease

22 43928850 C/T rs738408 0.320
(0.019)

3.45E-61 8395/
59449

0.232

X278.11 Morbid obesity 16 53767042 T/C rs1421085 0.226
(0.014)

8.94E-61 16694/
45492

0.388

X250.14 Type 1 diabetes
with neurological
manifestations

6 32706117 C/T rs1794269 0.896
(0.055)

8.79E-60 1080/
53267

0.372

X571 Chronic liver
disease and

cirrhosis

22 43928850 C/T rs738408 0.308
(0.019)

1.94E-58 8735/
59449

0.231

X145.1 Cancer of lip 10 104925395 A/C rs117685299 6.959
(0.433)

4.72E-58 118/
75275

0.001

X715.2 Ankylosing
spondylitis

6 31368220 C/T rs146683910 1.770
(0.112)

7.44E-56 414/
54877

0.039

X272.1 Hyperlipidemia 19 44908822 C/T rs7412 -0.330
(0.021)

1.56E-55 33356/
46948

0.080

X272 Disorders of lipoid
metabolism

19 44908822 C/T rs7412 -0.328
(0.021)

6.40E-55 33433/
46948

0.080

X145.1 Cancer of lip 10 2525677 G/A rs117915764 6.354
(0.413)

2.16E-53 118/
75275

0.001

Table 2. Top thirty strongest associations in MGI Freeze 6 GWASs. The top thirty most
significant independent associations. Note that the same association is sometimes detected for
multiple related subphenotypes (e.g. rs6025 is associated with 6 coagulation phenotypes).

7. Phenotype Genotype Reference Map

To assess how well our GWAS analyses were in replicating known associations, we
used the Phenotype Genotype Reference Map11 using both the European only and
multi-ancestry GWAS catalog maps. We were well-powered (power > 80%) to detect 1,509 and
2,157 previously reported associations from the European and multi-ancestry GWAS Catalogs,
respectively. Of these, we successfully replicated 69.9% of the European associations and
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62.3% of the multi-ancestry associations (Table 3). The actual:expected ratio (AER), calculated
as the number of replicated associations divided by the sum of the power, was 0.7 for European
associations and 0.65 for multi-ancestry associations (Table 3). These values are somewhat
lower than were reported previously in Freeze 3 MGI GWASs1,11 (well powered replication rate =
76.1% and AER = 0.79), potentially due to the increase in heterogeneity when using a
multi-ancestry study cohort.

PGRM
population

Replication Rate
well powered

Replication Rate
all

Actual:Expected
Ratio
(AER)

EUR  69.6% (1,107 of 1509) 42.9% (1,881 of 4,388) 0.7
ALL 62.3% (1,343 of 2157) 41.1% (2,224 of 5,416) 0.65

Table 3. Phenotype Genotype Reference Map. Results from the PGRM for European only and
multi-ancestry GWAS catalogs. The well powered replication rate refers to an estimated power
of >80%. Numbers in parentheses report the number of variants replicated of the total number
of PGRM associations.

9. Limitations of these Data

While multi-ancestry analyses are important for understanding relationships between
genetics and disease risk in diverse populations, uncontrolled population stratification can result
in both false positive and false negative GWAS signals5. Here we use a mixed model approach
with a GRM8 to control for sample relatedness and 20 PCs to correct for population stratification.
While population stratification is not always adequately controlled when using a mixed model
approach5, it is less computationally expensive and potentially more powerful than conducting
ancestry stratified GWAS and subsequent meta-analysis for the 1,728 traits in our PheWeb. We
have carefully examined the results for systematic test statistic inflation and observed a mean
genomic control of 1.01, in line with typical GWAS results from single population studies (Figure
3). We verified that well established genotype-phenotype associations from the PGRM11 were
replicated (Table 3). However, given that less than 14% of the MGI population is of
non-European genetic ancestry1,4, some care should be taken in interpreting the multi-ancestry
results.

10. Accessing the PheWeb

Results can be viewed online on our PheWeb and summary statistics can be requested
by contacting phdatahelp@umich.edu.
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